
Efficiently Solving Hybrid Logic/Optimization Problems

Through Generalized Conflict Learning
Hui Li and Brian Williams

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

{huili, williams}@mit.edu

Abstract

An increasing range of problems in Artificial Intelligence

and Computer Science, such as autonomous vehicle control

and planning with resources, are formulated through a

combination of logical, algebraic and cost constraints. Their

solution requires a hybrid mixture of logical decision

techniques and mathematical optimization. Using

Disjunctive Programming (DP) to formulate these problems,

we present a novel algorithm, called DP Conflict-Directed

Branch and Bound (B&B), that efficiently solves DP

problems through a powerful three-fold method. First,

during the search process, generalized conflict learning

learns qualitative descriptions (conflicts) for regions of the

state space that are infeasible or sub-optimal. Second,

forward conflict-directed search uses these qualitative

descriptions to heuristically guide the forward step of the

search, by moving away from regions of state space

corresponding to known conflicts. Finally, induced unit

clause relaxation automatically forms a strong relaxed

problem from a subset of the unit clauses that are implied by

the original problem. Our experiments on model-based

temporal plan execution for cooperative vehicles

demonstrate an order of magnitude speed-up over Mixed

Integer Programming B&B.

1 Introduction

An increasing range of problems in Artificial Intelligence

and Computer Science involve finding optimal solutions to

problems that involve a rich combination of logical and

algebraic constraints, and require a hybrid coupling of

logical decision techniques with mathematical optimization

to solve. Examples include planning with resources,

autonomous vehicle control and verification of timed and

hybrid systems. Focusing on the area of autonomous

vehicle control, deep space explorers must choose between

tasks and temporal orderings, while optimizing flight

trajectories for fuel usage. On Earth, search and rescue

units must construct and compare different vehicle

trajectories around dangerous areas, such as a fire, on the

approach to a trapped individual.

 Each of these tasks involves designing an optimal state

trajectory, based on a continuous dynamic model. At some

point, they must satisfy additional logical constraints, such

as mission tasks, task orderings and obstacle avoidance.

 These Hybrid Logic/Optimization Problems (HLOPs)

can be formulated in three ways: first, by introducing

integer variables and corresponding constraints to Linear

Programming (LP), known as Mixed Integer Programming

(MIP) as in [Schouwenaars et al, 2001, Vossen et al, 1999,

Kautz and Walser, 1999]; second, by augmenting LP with

propositional variables so that the propositional variables

can be used to “trigger” linear constraints, known as Mixed

Logic Linear Programming (MLLP)1 in [Hooker and

Osorio, 1999] and LCNF2 in [Wolfman and Weld, 1999];

third, by extending LP with disjunctions, without adding

any variables or constraints, called Disjunctive

Programming (DP) as in [Balas, 1979]. This paper builds

upon the last option, DP, which combines the expressive

power of propositional logic with that of LP, without the

overhead of additional variables or constraints.

 In this paper we introduce a novel algorithm for

efficiently solving Disjunctive Programs called Conflict-

Directed Branch & Bound (DP-CD-BB). It extends the

Branch & Bound (B&B) algorithm by using logical

inference to do relaxation, by abstracting the qualitative

descriptions of the source of discovered infeasibility and

sub-optimality as conflicts to guide the forward search, so

as to prune the state space. Our experiments, comparing

DP-CD-BB against Mixed Integer Programming B&B

(MIP-BB), demonstrate a significant performance gain on

model-based temporal plan execution for cooperative

vehicles.

 DP-CD-BB builds upon the Conflict-Directed Clausal

LP Branch & Bound method in [Krishnan, 2004], which

uses the same formulation as DP and learns infeasible

states as conflicts to guide the search. The concept of

conflict learning from sub-optimality draws from Activity

Analysis in [Williams and Cagan, 1994], which reasons

using qualitative abstractions of sub-optimal subspaces in

order to guide the numerical methods away from subspaces

with the same abstractions.

2 Problem Formulation

We use disjunctive programs to effectively capture both

the continuous dynamics and control decisions present in

1MLLP is a generalization from MIP, but its main feature is the

introduction of propositional variables.
2Optimization is not involved.

hybrid logic/optimization problems. Figure 1 depicts a

simple example of an HLOP, introduced in [Schouwenaars

et al, 2001]. Eq. (1) describes its DP formulation. In

particular, this is an instance of a spatial reasoning

problem, in which a vehicle has to go from point A to C,

without hitting the obstacle B, while minimizing the fuel

use.

Figure 1. A simple example of an HLOP

Minimize f(x)

Subject to g(x) ! 0 (1)

 and xi ! xL V xi " xR V yi ! yB V yi " yT ,

 ! i = 1, …, n

In Eq. (1), V denotes logical or, x is a vector of decision

variables that includes, at each time step i (=1,…,n), the

position, velocity and acceleration of the vehicle; f(x) is a

linear cost function in terms of fuel use; g(x) ! 0 is a

conjunction of linear constraints on vehicle dynamics, and

the last constraint keeps the vehicle outside obstacle B at

each time step i. In general, DP takes the form shown in

Eq. (2):

 Minimize f(x)

Subject to "i=1,…,n (Vj=1,…,mi Cj(x) ! 0) (2)

where x is a vector of decision variables, f(x) is a linear

cost function, and the constraints are a conjunction of n

clauses, each of which (clause i) is a disjunction of mi

linear inequalities, Cj(x) ! 0. DP reduces to a standard LP

in the special case when mi=1, !i=1,…,n. In comparison

with MIP, DP adds no overhead variables or constraints to

represent logical decisions.

3 The DP-CD-BB Algorithm

The DP-CD-BB algorithm has four key features: First,

Generalized Conflict Learning, which learns qualitative

abstractions (conflicts) comprised of constraint sets that

produce either infeasibility or sub-optimality; Second,

Forward Conflict-Directed Search, which heuristically

guides the forward step of the search away from regions of

state space corresponding to known conflicts; Third,

Induced Unit Clause Relaxation, which forms a relaxed

problem from a subset of the unit clauses that are induced

from the original problem; Fourth, Search Order: Best-first

Search (BFS) versus Depth-first Search (DFS). In the

following subsections, we develop these key features in

detail, including examples and pseudo code.

 DP-CD-BB builds upon B&B, which is frequently used

by MIP, to solve problems involving both discrete and

continuous variables. Instead of exploring the entire

feasible set of a constrained problem, B&B uses bounds on

the optimal cost, in order to avoid exploring subsets of the

feasible set that it can prove are sub-optimal, that is,

subsets whose optimal solution is not better than the

incumbent, which is the best solution found so far. Pseudo

code for B&B is shown in Figure 2.

GenericBB (original problem F)

1 incumbent U = +#;

2 select a sub-problem Fi;

3 if (Fi is infeasible)

4 delete it;

5 else

6 compute the lower bound lb(Fi);

7 if (lb(Fi)" U)

8 delete Fi;

9 else if (the solution to Fi satisfies all the constraints of

F)

10 U # lb(Fi);

11 else

12 break Fi into sub-problems;

Figure 2. Pseudo code for generic Branch & Bound

The search tree of B&B for MIP branches by assigning

values to the integer variables. In our case, B&B for DP

branches by splitting clauses. At each node in the search

tree, a relaxed LP is solved. p’ is a relaxed LP of an

optimization problem p, if the feasible region of p ’

contains the feasible region of p, and they have the same

objective function. Therefore if p’ is infeasible, then p is

infeasible; if p’ is solved with an optimal value v, the

optimal value of p is guaranteed to be worse than v. B&B

uses relaxed problems to obtain lower bounds of the

original problem (assuming minimization).

3.1 Generalized Conflict Learning

Underlying the power of B&B is its ability to prune subsets

of the search tree that correspond to relaxed sub-problems

that B&B identifies as inconsistent or sub-optimal, as seen

in line 4 and 8 in Figure 2.

 In the related field of discrete constraint satisfaction,

conflict-directed methods, such as dependency-directed

backtracking [Stallman and Sussman, 1977], backjumping

[Gaschnig, 1978], conflict-directed backjumping [Prosser,

1993] and dynamic backtracking [Ginsberg, 1993],

dramatically improve the performance of backtrack (BT)

search, by learning the source of each inconsistency

discovered, and by using this generalization, called a

conflict, to prune additional sub-trees that the conflict

identifies as inconsistent.

 To apply conflict learning to B&B, we note that B&B

prunes subtrees corresponding to relaxed sub-problems that

are sub-optimal and infeasible. Hence two opportunities

exist for learning and generalized pruning. We exploit

these opportunities by introducing the concept of

generalized conflict learning, which extracts a qualitative

description from each pruned (fathomed) sub-problem that

is infeasible or sub-optimal. This avoids exploring sub-

problems with the same description in the future.

Moreover, it is valuable to have the qualitative description

as compact as possible, because the smaller the conflict is

the larger the subspace to be pruned.

 Each conflict can be of two types: (1) an irreducible set

of constraints that is learned from infeasibility, or (2) an

irreducible set of constraints that is learned from sub-

optimality. A set of constraints is irreducible if removing

any one of the constraints from the set resolves the

infeasibility or sub-optimality. Note that there can be more

than one irreducible sets (possibly with different

cardinalities) involved in one infeasibility or sub-

optimality, and a type-1 or type-2 conflict is not guaranteed

to have the m i n i m a l cardinality. Hence the name

irreducible instead of minimal. An infeasibility conflict

(type 1) is an irreducible subset of the inconsistent

constraints of an infeasible sub-problem. An example is the

constraint set {a,c,d} in Figure 3(b). The sub-problem in

Figure 3(a) is infeasible, but its constraint set is not an

infeasibility conflict, as a proper subset of it, as in Figure

3(b), remains inconsistent. An active constraint of a

feasible problem S, is a constraint that takes equality at S’s

optimal solution x*. A sub-optimality conflict (type 2) is an

irreducible subset of the active constraints of a feasible

sub-problem whose optimal solution is not better than the

incumbent. An example is the constraint set {c} in Figure

4(b). All the constraints are active in Figure 4(a), but the

set {a,b,c,d} is not a sub-optimality conflict, as it can be

reduced to Figure 4(b) without affecting the optimal

solution x*.

Figure 3(a). An infeasible sub-

problem: constraint set {a,b,c,d}

is not consistent.

To perform generalized conflict learning efficiently, the

dual method of LP is used to extract a sub-problem’s

irreducible set. For infeasibility, this function is provided

by the commercial software CPLEX: getIIS(), and its

principle is explained in [Wolfman and Weld, 1999]. For

sub-optimality, we introduce a novel approach based on

the LP dual method. According to Complementary

Slackness [Bertsimas and Tsitsiklis, 1997] from linear

optimization theory or equivalently Kuhn-Tucker

conditions for the linear case [Williams and Cagan, 1994],

the non-zero terms of the optimal dual vector correspond to

the irreducible set of active constraints at the optimal

solution of the LP. Thus we use the dual optimal solution

that is provided by the CPLEX function, getDuals(), to

identify the sub-optimality conflict. The pseudo code is

shown in Figure 5. After they are extracted, the conflicts

are stored in a conflict database, confDB, with a timestamp

that marks when they are discovered.

ExtractSubConf(LP problem p)

1. solve p using CPLEX;

2. if (p solved with an optimal solution) {

3. dual # getDuals();

4. for (int i=0; i<dual.length; i++)

5. if (dual[i] !=0)

6. subConf.add(constraint[i]); //constraint[i] is the

corresponding constraint in p.

7. return subConf;

8. }else

9. return null;

Figure 5. The function to extract sub-optimality conflicts

3.2 Forward Conflict-directed Search

The forward conflict-directed search heuristically guides

the forward step of the search away from regions of the

feasible space that are ruled out by known conflicts.

Traditionally, conflicts are used in the backward step, such

as dependency-directed backtracking [Stallman and

Sussman, 1977], backjumping [Gaschnig, 1978], conflict-

directed backjumping [Prosser, 1993], dynamic

backtracking [Ginsberg, 1993] and LPSAT [Wolfman and

Weld, 1999]. These backtrack search methods use conflicts

to select backtrack points. In contrast, we use conflicts in

forward search, to move away from known “bad” states.

We generalize this idea to guiding B&B away from regions

of state space that the known conflicts indicate are

infeasible or sub-optimal. Our experiment results show that

forward conflict-directed search significantly outperforms

backtrack search on a range of cooperative vehicle plan

execution problems.

 The implementation , as seen in the pseudo code in

Figure 6, includes three steps. 1. Conflict retrieval from

confDB : only conflicts that are discovered after the

creation time of the node to be expanded,

Figure 4(a).The optimal solution

is X*. Constraints a, b, c and d

are all active.

(b) After removing constraint

b, it is still infeasible.

(b). After removing constraints

a, b and d, X* stays the same.

nodeToExp.timestamp, are retrieved, because conflicts

discovered before are resolved by the creation of this node

or its parents. Note that a node in the search tree represents

a DP problem, which is a partially assigned problem from

the original DP problem. 2. Negation: the types of the

linear constraints in each conflict are reversed (e.g. !

becomes ") and the relation between the constraints in each

conflict becomes logical or, so that a conflict is turned into

a clause, called a conflict clause. Recall that a conflict

represents the region where no feasible solution or only

sub-optimal solutions exist. Therefore a conflict clause

denotes the regions where an optimal solution can lie. 3.

Clause addition: conflict clauses, confClauses, are added to

the clause set of the node to be expanded,

nodeToExp.clauseSet. In this way, nodeToExp is updated.

ForwardCDSearch(confDB, nodeToExp)

1. if (confDB(nodeToExp.timestamp) != null) {

2. currConfs # confDB(nodeToExp.timestamp);

3. for (int i=0; i<currConfs.length; i++)

4. for (int j=0; j<currConfs[i].length; j++)

5. confClauses[i].add(¬ currConfs[i][j]);

6. nodeToExp.clauseSet.add(conClauses);

7. }

8. GenericBB(nodeToExp);

Figure 6. Pseudo code for forward conflict-directed search

3.3 Induced Unit Clause Relaxation

Relaxation is an essential tool for quickly characterizing a

problem when the original problem is hard to solve

directly; it provides bounds on feasibility and the optimal

value of a problem, which are commonly used to prune the

search space. Previous research [Hooker, 2002] typically

solves Disjunctive Programs by reformulating them as

Mixed Integer Programs, in which binary integer variables

are used to encode the disjunctive constraints. A relaxed

problem for a MIP consists of the continuous relaxation of

the integer constraints.

 An alternative way of creating a relaxed LP is to operate

on the DP encoding directly, by removing all non-unit

clauses from the DP (a unit clause is one that contains a

single constraint). Prior work argues for the reformulation

of DP as MIP relaxation, with the rationale that it allows

the solver to use continuous relaxation on the (binary)

integer variables, in contrast to ignoring the non-unit

clauses. However, this benefit is at the cost of adding

integer variables and constraints, which can significantly

increase the dimensionality of the search problem. This

cost is not incurred by the DP relaxation.

 Our approach starts with the direct DP relaxation, hence

drawing from its strength in terms of a smaller state space.

We overcome the weakness of standard DP relaxation (loss

of non-unit clauses) by adding to the relaxation additional

unit clauses that are logically entailed by the original DP.

In the experiment section we compare our induced unit

clause relaxation with the MIP relaxation and show a

profound improvement on a range of cooperative vehicle

plan execution problems.

 The strongest relaxed problem is constructed when all

entailed unit clauses are added to the relaxed problem;

however, finding all of them is NP hard. A relaxation is

valuable only to the extent that it saves computation time.

Hence we choose the middle ground of finding all unit

clauses that can be quickly induced. From propositional

theories, unit clauses can be induced quickly through unit

propagation; we generalize this approach to DP.

 To implement induced unit clause relaxation, as seen in

pseudo code in Figure 7 and the example in Figure 8, three

steps are included. 1. Each unique constraint in the clause

set of the DP problem p is assigned a unique propositional

symbol. 2. (Incremental) Unit Propagation, as presented in

ITMS [Nayak and Williams, 1997], is used to induce unit

clauses. 3. The relaxed LP problem is formed with all the

unit clauses induced from p and the objective function of p.

UnitClauseRelax(DP problem p)

1. symbClauseSet # p.clauseSet; //assigning a unique

propositional symbol to each unique linear inequality.

2. unitClauseSet # UnitPropagation(symbClauseSet);

3. relaxLP.constraintSet # unitClauseSet.convert();

//converting symbols to linear inequalities to form the

relaxed LP

4. relaxLP.objective # p.objective;

5. return relaxLP;

Figure 7. Pseudo code for induced unit clause relaxation

Figure 8. An example of induced unit clause relaxation

3.4. Search Order: Best-first versus Depth-first

For B&B it is known empirically that, in the average case,

Best-first Search (BFS) performs better than Depth-first

Search (DFS) in time efficiency. This is because BFS

expands the search tree in the order of always exploring the

most promising node, thus allows larger portions of the

search tree to be pruned. However, BFS can take

dramatically more memory space than DFS. Nevertheless,

with conflict learning and forward conflict-directed search

the queue of the BFS search tree is significantly reduced.

Our experimental results show that BFS can take memory

space similar to DFS.

 An additional issue for DP-CL-BB is that the concept of

sub-optimality is rooted in maintaining an incumbent.

Hence it can be applied to DFS but not to BFS (which does

not have an incumbent). To evaluate these tradeoffs, our

experiments in the next section compare the use of BFS

and conflict learning from infeasibility only, with DFS and

conflict learning from both infeasibility and from sub-

optimality.

4 Experimental Performance Analysis

This section provides experimental results of the DP-CD-

BB solver, compared with the benchmark MIP-BB, on a

range of problems. We also compare the effect of several

parameters, in particular, BFS versus DFS, infeasibility

conflict learning versus sub-optimality conflict learning

and forward search versus backtrack search. While each

algorithmic variant terminates with the same optimal

solution, a major result is that DP-CD-BB achieves an

order of magnitude speed-up over MIP-BB. In addition, the

difference in performance increases as the problem

enlarges.

 As the bulk of the computational effort expended by

these algorithms is devoted to solving relaxed LP

problems, the total number and average size of these LPs

are representative of the total computational effort

involved in solving the HLOPs. Note that extracting

infeasibility conflicts and sub-optimality conflicts can be

achieved as by-products of solving the LPs, and therefore

does not incur any additional LP to be solved. We use the

total number of relaxed LPs solved and the average LP size

as our LP solver and hardware independent measures of

computation time.

 As explained in the first section and verified by our

experiments, the MIP encoding enlarges the HLOP by

adding overhead integer variables and constraints.

Therefore, the average size of its LPs is larger than that of

the LPs solved for the DP encoding. Experiments also

show that the average sizes of relaxed LPs, solved by all

the methods that use the DP encoding, are similar to each

other. The data table is not listed due to space limit of the

paper. To measure memory space use, maximum queue

size is used.

 We programmed MIP-BB, DP-CD-BB and its variations

in Java. All used the commercial software CPLEX as the

LP solver. Test problems were generated using a model-

based temporal planner, performing multi-vehicle search

and rescue missions. This planner takes as input a

temporally flexible state plan, which specifies the goals of

a mission, and a continuous model of vehicle dynamics,

and encodes them in DP. The DP-CD-BB solver generates

an optimal vehicle control sequence that achieves the

constraints in the temporal plan. For each Clause/Variable

set, 15 problems were generated and the average was

recorded in the tables. These planning problems are tightly

constrained and hence often “hard” problems, as studied in

[Mitchell et al, 1992].

 In Table 1, the number of relaxed LPs solved for each

approach is recorded. The second row shows that MIP-BB

solves more LPs than any other approach. The difference

increases dramatically as the problem grows larger. The

next three rows are dedicated to DP with BFS. The

addition of infeasibility conflict learning (Inf) significantly

outperforms without conflict learning (w.o. CL). The

method using conflict-directed backtrack search (BT),

which uses infeasibility conflicts to check consistency of a

relaxed LP before solving it, performs dramatically worse

than the method using forward conflict-directed search

(Inf). The last five rows represent the variations of DP with

DFS. Within these five rows, the method that solves the

least relaxed LPs is the method with both infeasibility and

sub-optimality conflict learning (Sub+Inf). The worst case

is w.o. CL.

 Consider BFS versus DFS, using only infeasibility

conflict learning, BFS performs better than DFS, but the

performance of DFS with Sub+Inf is close to BFS with Inf.

For very large problems, DFS with Sub+Inf performs

better. Under the same situation, either w.o. CL or with Inf

or with BT, BFS solves less relaxed LPs than DFS, as

explained before in section 3.4. As the only difference

between DP with DFS without conflict learning and MIP-

BB is in the formulation and relaxation methods, the

significant improvement of the former over the latter

verifies the statement in section 3.3.

 For all tests, our DP-CD-BB algorithm, using either DP

with BFS and infeasibility conflict learning, or DP with

DFS and infeasibility plus sub-optimality conflict learning,

performs the best and has a profound improvement over

MIP-BB on large problems.

Clause /

Variable

80 /

36

700/

144

1492/

300

2336/

480

MIP-BB 31.5 2009 4890 8133

w.o.

CL
24.3 735.6 1569 2651

Inf 19.2 67.3 96.3 130.2
DP

BFS
BT 23.1 396.7 887.8 1406

w.o.

CL
28.0 2014 3023 4662

Inf 22.5 106.0 225.4 370.5

BT 25.9 596.9 1260 1994

Sub

+Inf
22.1 76.4 84.4 102.9

DP

DFS

Sub 25.8 127.6 363.7 715.0

Table 1. Comparison on the number of relaxed LPs solved

In Table 2, all approaches have similar maximum queue

sizes, except BFS w.o. CL and BFS with BT. As discussed

in section 3.4, BFS generally takes more memory space

than DFS, but when forward conflict-directed search is

used, the search space is reduced and the corresponding

queue is shortened. Note that although the methods using

BT are conflict-directed, the queue size of the one with

BFS is not largely reduced.

Clause /

Variable

80 /

36

700/

144

1492/

300

2336/

480

MIP-BB 8.4 30.8 46.2 58.7

w.o.

CL
19.1 161.1 296.8 419.0

Inf 6.4 18.3 38.4 52.5
DP

BFS
BT 15.6 101.7 205.1 327.8

w.o.

CL
6.1 18.7 25.1 30.3

Inf 6.5 21.4 45.0 57.3

BT 6.1 18.4 23.5 28.1

Sub

+Inf
6.5 21.4 33.0 40.9

DP

DFS

Sub 6.5 21.6 38.7 47.0

Table 2. Comparison on the maximum queue size

5. Conclusion

Hybrid Logic/Optimization Problems can be encoded
effectively using Disjunctive Programming (DP). This
paper presented a novel algorithm, DP Conflict-Directed
Branch and Bound, that efficiently solves DP problems
through a powerful three-fold method, featuring
generalized conflict learning, forward conflict-directed

search and induced unit clause relaxation. The key feature
of the approach is that infeasible or sub-optimal subsets of
state space are reasoned using qualitative descriptions
(conflicts), in order to heuristically guide the forward step
of the search, by moving away from regions of state space
corresponding to known conflicts. Our experiments on
model-based temporal plan execution for cooperative
vehicles demonstrated an order of magnitude speed-up
over Mixed Integer Programming Branch and Bound.

References

[Balas, 1979] E. Balas. Disjunctive programming, Annals

of Discrete Mathematics 5 3-51.

[Bertsimas and Tsitsiklis, 1997] D.Bertsimas and

J.N.Tsitsiklis. Introduction to Linear Optimization.

[Bitner and Reingold, 1975] J. Bitner and E. Reingold.

Backtrack Programming Techniques, Communications of

the Association for Computing Machinery 18(11).

[Gaschnig, 1978] J. Gaschnig Experimental Case Studies

of Backtrack vs. Waltz-type vs. New Algorithms for

Satisficing Assignment Problems. The 2nd Canadian

Conference on AI 268-277.

[Ginsberg, 1993] M. Ginsberg, Dynamic backtracking,

Journal of Artificial Intelligence Research 1 25–46.

[Hooker and Osorio, 1999] J.N.Hooker and M.A.Osorio.

Mixed Logical/Linear Programming. Discrete Applied

Mathematics 96-97 395-442.

[Hooker, 2002] J.N.Hooker, Logic, optimization and

constraint programming, INFORMS J. on Computing 14

295-321.

[Krishnan, 2004] R. Krishnan. Solving Hybrid Decision-

Control Problems Through Conflict-Directed Branch &

Bound. M.Eng. Thesis. MIT.

[Mitchell et al, 1992] D. Mitchell, B. Selman, H. Levesque.

Hard and easy distributions of SAT problems. AAAI.

[Nayak and Williams, 1997] P. Nayak, B. Williams. Fast

Context Switching in Real-time Propositional Reasoning,

AAAI.

[Prosser, 1993] P. Prosser. Hybrid algorithms for the

constraint satisfaction problem, Computational Intelligence

3, 268–299.

[Ragno, 2002] R. Ragno. Solving Optimal Satisfiability

Problems Through Clause-Directed A*. M.Eng. Thesis.

MIT.

[Schouwenaars et al, 2001] T. Schouwenaars, B. De Moor,

E. Feron, J. How.,T Mixed integer programming for multi-

vehicle path planning. European Control Conference.

[Stallman and Sussman, 1977] R. Stallman and G. J.

Sussman. Forward reasoning and dependency-directed

backtracking in a system for computer-aided circuit

analysis, Artificial Intelligence 9 135–196.

[Vossen et al, 1999] T. Vossen, M. Ball, A. Lotem, D.

Nau. On the use of integer programming models in AI

planning. IJCAI.

[Williams and Cagan, 1994] B. Williams and J. Cagan.

Activity Analysis: The Qualitative Analysis of Stationary

Points for Optimal Reasoning. AAAI.

[Wolfman and Weld, 1999] S. Wolfman and D. Weld. The

LPSAT engine & its application to resource planning.

IJCAI.

